Vetaif.ru

Авто журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор напряжения на кт819

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.


Принципиальная электрическая схема

Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 30 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

Кому лень читать

Я не зря опять затронул эту тему ,это одна из самых массово выпускаемых интегральных микросхем.

Улучшенная схема будет выглядеть так: Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

Datasheet на русском.. К примеру, если в качестве датчика применить фототранзистор , то в конечном итоге получится фотореле, реагирующее на степень освещенности. На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Быстрое переключение.

Схема, приведенная ниже, представляет собой мощный светильник на двух ваттных светодиодах и ваттном IRF в корпусе ТО см. В полной схеме включения к TL добавляются еще два резистора, но в этом случае можно получить произвольное выходное напряжение. Рисунок 5.

Читать еще:  Митсубиси паджеро габаритные размеры

Простое зарядное устройство для литиевого аккумулятора. Но этого тока достаточно для очень слабого свечения светодиода HL1. Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения.

Вместо заключения

Но у светодиода максимально допустимый ток составляет всего 20 мА. В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, то есть зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Реле времени TL нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP

TL Ее выпуск стартовал в году. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга.
TL431 управляемый стабилитрон,как проверить работу.

Переделка импортного регулятора напряжения

Электроника за рулем

Э. АДИГАМОВ, г. Ташкент, Узбекистан
Радио, 1998 год, №7

Случилась неприятность — на иномарке вышел из строя регулятор напряжения. Как быть? На этот вопрос радиолюбитель ответит без колебаний: собрать новый. Да чтоб он был лучше прежнего! О том, как это сделать практически, и рассказывает автор в представленной здесь статье.

На автомобиле NISSAN-MARCH перестал работать генератор. Проверка показала, что причина отказа — неисправность регулятора напряжения, в результате чего ротор генератора остался без тока возбуждения.

Регулятор напряжения конструктивно выполнен в виде гибридной микросхемы, устаноаленной в щеткодержателе генератора (фирмы HITACHI; напряжение 12 В, ток нагрузки 40 А).

Поскольку вышедшую из строя микросхему приобрести не удалось, я решил изготовить альтернативный вариант регулятора, который обеспечил бы высокую точность поддержания напряжения 13,8 В на зажимах аккумуляторной батареи и имел габариты, позволяющие встроить его в щеткодержатель генератора взамен отказавшего.

Падение напряжения на зажимах аккумуляторной батареи при работе генератора с регулятором фирмы HITACHI при включении большинства потребителей (дальний свет, обогреватель заднего стекла, стеклоочиститель, вентилятор отопителя) в режиме холостого хода двигателя автомобиля не превышало 0,5 В. Во всех других возможных режимах работы двигателя и электрооборудования изменения напряжения на зажимах батареи зарегистрировать не удалось. Измерения я проводил универсальным стрелочным прибором РМ2502 фирмы PHILIPS, имеющим класс точности 1,5 при измерении постоянного напряжения.

Как показала практика эксплуатации аккумуляторной батареи на автомобиле, срок ее службы в значительной степени зависит от значения напряжения на ее зажимах, которое должно быть равно 13,8 В, и точности его поддержания [1]. Автор статьи [2] отмечает, что применение в рассматриваемом случае регулятора от отечественных автомобилей нецелесообразно, так как он не обеспечивает высокую точность поддержания напряжения на зажимах аккумуляторной батареи. Кроме того, отечественные реле-регуляторы требуют внесения изменений в проводку автомобиля, да и встроить их на место испортившегося устройства не представляется возможным.

Между тем поставленным требованиям, как оказалась, вполне удовлетворяет регулятор напряжения, описанный в [3]. Небольшое число используемых в нем деталей позволило разместить их на плате размерами 30×20 мм и без особого труда встроить ее в щеткодержатель генератора фирмы HITACHI. Подобным образом возможно восстановить работоспособность генераторов и других моделей зарубежных автомобилей.

Схема регулятора изображена на рис. 1. Там же показано его включение в бортовую сеть автомобиля. Как уже сказано, за основу устройства взят регулятор из [3]. Изменению подвергнута лишь его выходная ступень. Транзисторы VT1 и VT2 включены по схеме составного транзистора, коллекторной нагрузкой которого служит обмотка ротора генератора.

При замыкании контактов замка зажигания SA1 напряжение от аккумуляторной батареи GB1 поступит (через выв. 2) к операционному усилителю (ОУ) DA1 регулятора. На неинвертирующем входе ОУ появится стабилизированное напряжение около 8,2 В, снимаемое со стабилитрона VD1. На инвертирующем входе ОУ постоянно присутствует напряжение, определяемое резистивным делителем R1R2R3 и равное примерно 7,3 В.

Поскольку ОУ DA1 работает без обратной связи, на его выходе появится почти полное напряжение батареи GB1, приложенное к выв. 7 ОУ. Это напряжение через диод VD3 и резистивный делитель R6R7 поступит на базу составного транзистора VT1VT2. В результате транзистор VT2 откроется и от батареи через лампу HL1, обмотку ротора генератора G1 и транзистор VT2 потечет ток. Включится контрольная лампа HL1, и в роторе G1 появится магнитное поле.

После запуска двигателя вырабатываемое рабочими обмотками генератора напряжение выпрямляется диодами, прикладывается к ротору генератора G1 и через разъем Х1 — к батарее GB1, обеспечивая ее подзарядку. Напряжение на обоих выводах лампы HL1 относительно общего провода становится почти одинаковым, и лампа HL1 гаснет, что свидетельствует об исправной работе генератора.

По мере увеличения частоты вращения коленчатого вала двигателя (и связанного с ним вала генератора) напряжение на инвертирующем входе ОУ DA1 увеличивается. Как только оно станет равным напряжению на неинвертирующем входе, операционный усилитель переключится, его выходное напряжение уменьшится почти до нуля, что приведет к закрыванию составного транзистора VT1VT2 и прекращению тока через обмотку ротора генератора G1. Напряжение на разъеме Х1 уменьшается, ОУ снова переключается, и процесс повторяется.

Таким образом, на разъеме Х1 устанавливается среднее напряжение, устанавливаемое подборкой резистора R2. Легко видеть, что составной транзистор работает в переключательном режиме — либо он надежно закрыт, либо открыт и насыщен.

Читать еще:  Как усилить пружины задней подвески

Резистор R8 обеспечивает полное закрывание транзистора VT2, когда ток возбуждения спадает до нуля. Номинал резистора R5 уменьшен до 1,5 МОм, благодаря чему более четко проявляется электрический «гистерезис» ОУ, уменьшающий вероятность перехода выходной ступени в линейный режим.

Диод VD2 гасит ЭДС самоиндукции обмотки ротора генератора, возникающую в момент закрывания составного транзистора. Диод V1 из исходного устройства исключен, поскольку соединение входного делителя R1R2R3 регулятора с выходным разъемом Х1 конструктивно выполнен внутри щеткодержателя генератора.

Подстроечный резистор R3 также исключен, так как налаженное один раз на стенде устройство в процессе эксплуатации никакой корректировки не требует. Более того, наличие подстроенного резистора в условиях резких изменений температуры, воздействия пыли, влаги (конденсата) и вибрации снизило бы надежность регулятора.

Устройство смонтировано на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1 мм. Чертеж платы представлен на рис. 2. Резисторы R4, R6, R7 и диод VD3 припаяны со стороны печатных проводников. Выводы транзистора VT1 изогнуты под углом 90 град.; его располагают торцом к торцу микросхемы. Под транзистор следует вложить картонную прокладку толщиной около 0,5 мм.

Транзистор VT2 крепят вне платы, на внутренней стороне задней крышки генератора на свободном месте рядом со щеткодержателем, через слюдяную прокладку.

В регуляторе можно использовать конденсатор С1—КМ-5, КМ-6 или К10-17; стабилитрон VD1 — КС182Е, КС191Е, КС182Ж или КС191Ж в корпусе КД-2 (КД-3). Вместо КД522Б (VD3) подойдут любые из серий КД521, КД522; диод VD2 — любой из серии КД209 в каплевидном корпусе.

Транзистор КТ817В можно заменить наКТ815Б—КТ815Г, КТ817Б, КТ817Г. Транзистор КТ819В заменим на КТ819Б, КТ819Г

Крепежный винт изолируют от теплоотводящего фланца транзистора VT2 изолирующей втулкой и шайбой. Крышку генератора в месте установки транзистора следует зачистить мелкой наждачной бумагой. Перед окончательной установкой транзистора слюдяную прокладку нужно смазать с обеих сторон теплопроводящей пастой КТП. При ее отсутствии используют смазку ЛИТОЛ-24. Как показала практика, использование ЛИТОЛа дает даже более долговременный результат, чем паста КТП.

Микросхему КР140УД608 заменять другими не рекомендуется из-за их склонности к возбуждению при работе в описываемом регуляторе. В крайнем случае можно попробовать применить КР140УД708.

Целесообразно те печатные дорожки платы, по которым течет значительный ток, продублировать медным голым проводником диаметром 0,5 мм.

При сборке генератора следует проследить за тем, чтобы соединительные провода от транзистора VT2 к плате регулятора не задевали ротора генератора при его вращении. Для этого после монтажа платы выполняют пробную сборку щеткодержателя с платой и задней крышки и подбирают оптимальную длину проводов.

Для налаживания устройства его выводы 1 —3 соединяют вместе и подключают к плюсовому выводу регулируемого источника тока напряжением 12. 15 В, обеспечивающего ток нагрузки 3. 5 А, а вывод 5 — к минусовому выводу источника. К выводам 1—3 и 4 присоединяют эквивалент нагрузки (ротора генератора) — проволочный резистор сопротивлением 4 Ом мощностью 25. 50 Вт. Можно включить и сам ротор генератора, присоединяя (не припаивая) провода к контактным кольцам коллектора. Параллельно нагрузке подключают вольтметр с верхним пределом 15. 30 В.

Вместо резистора R2 временно припаивают подстроечный многооборотный резистор СП5-3 сопротивлением 33 кОм, соединив вместе средний и один из крайних его выводов.

Включают источник и устанавливают питающее напряжение 13,8 В. Если вольтметр показывает напряжение, близкое к указанному, вращают винт подстроечного резистора точно до момента пропадания напряжения на нагрузке. Затем питающее напряжение уменьшают до 12 В, при этом вольтметр должен снова показывать напряжение. Плавно увеличивают напряжение питания до момента пропадания напряжения на нагрузке. Переключение должно происходить при показании вольтметра 13,8 В.

Если напряжение переключения не равно указанному, еще точнее повторяют предыдущую операцию. В том случае, когда при первом включении вольтметр не показывает напряжения, вращением винта подстроечного резистора добиваются отклонения стрелки, а затем проводят описанные операции.

Налаживание следует проводить быстро, следя за тем, чтобы не перегреть и нагрузку, и транзистор VT2.

Выпаяв из платы подстроечный резистор, возможно более точно измеряют его сопротивление и заменяют постоянным такого же сопротивления. Еще раз повторяют указанные операции и убеждаются, что переключение происходит четко и при указанном напряжении.

Налаженную плату с обеих сторон покрывают двумя слоями клея БФ-2 с промежуточной сушкой. Готовую плату вклеивают герметиком ВГО-1 в щеткодержатель, который, в свою очередь, устанавливают в заднюю крышку генератора. Затем монтируют транзистор VT2, собирают генератор и проверяют его работу на автомобиле. Контролируют напряжение на зажимах аккумуляторной батареи при различных режимах работы двигателя и электрооборудования.

Эксплуатация автомобиля с описанным регулятором напряжения в течение более двух лет подтвердила его надежность и высокую стабильность поддержания напряжения в бортовой сети.

Аналогичным образом был отремонтирован более мощный (12 В; 60 А) генератор автомобиля NISSAN-SUNNY.

ЛИТЕРАТУРА
1. Суетин В. Долголетие — от заботы. — За рулем, 1985, № 2, с. 27.
2. Ломанович В. Термокомпенсированныи регулятор напряжения. — Радио, 1985, № 5, с. 24—27.
3. Трунин В. Регулятор напряжения. — Радио, 1983, №8, с. 33.

Блок питания 1-30V на LM317 + 3 х TIP41C или 3 х 2SC5200.

Блок питания 1-30V на LM317 + 3 х TIP41C
или 3 х 2SC5200.

Регулируемый блок питания 10А на LM317

В статье рассмотрена схема простого регулируемого источника питания, реализованная на микросхеме-стабилизаторе LM317, которая управляет мощными, включенными в параллель тремя транзисторами структуры NPN. Пределы регулировки выходного напряжения 1,2. 30 Вольт с током нагрузки до 10 Ампер. В качестве мощных выходников применены транзисторы TIP41C в корпусе TO220, ток коллектора у них 6 Ампер, рассеиваемая мощность 65 Ватт. Принципиальная схема блока питания показана ниже:

Читать еще:  Как полировать лобовое стекло автомобиля

В качестве выходников так же можно применить TIP132C, корпус TO220, ток коллектора у этих транзисторов 8 Ампер, рассеиваемая мощность 70 Ватт согласно datasheet.

Расположение выводов у транзисторов TIP132C, TIP41C следующее:

Расположение выводов у регулируемого стабилизатора LM317:

Транзисторы в корпусе TO220 впаиваются непосредственно в печатную плату и крепятся к одному общему радиатору с применением слюды, термопасты и изолирующих втулок. Но можно и применить транзисторы в корпусе TO-3, из импортных подойдут, например, 2N3055, ток коллектора которых до 15 Ампер, рассеиваемая мощность 115 Ватт, или транзисторы отечественного производства КТ819ГМ, они 15 Амперные с рассеиваемой мощностью 100 Ватт. В этом случае выводы транзисторов соединяются с платой проводами.

Как вариант, можно рассмотреть применение импортных 15-ти амперных транзисторов TOSHIBA 2SC5200 с рассеиваемой мощностью 150 Ватт. Именно этот транзистор я использовал при переделке KIT-набора блока питания, купленного на Алиэкспресс.

На принципиальной схеме клеммы PAD1 и PAD2 предназначены для подключения амперметра, на клеммы X1-1 (+) и X1-2 (-) подается входное напряжение с выпрямителя (диодного моста), X2-1 (-) и X2-2 (+) это выходные клеммы блока питания, к клеммнику JP1 подключается вольтметр.

Первый вариант печатной платы рассчитан на установку силовых транзисторов в корпусе TO220, вид LAY6 формата следующий:

Фото-вид платы LAY6 формата:

Второй вариант печатной платы под установку транзисторов типа 2SC5200, вид LAY6 формата ниже:

Фото-вид второго варианта печатной платы блока питания:

Третий вариант печатной платы такой же, но без диодной сборки, найдете в архиве с остальными материалами.

• R1 – потенциометр 5K – 1 шт.
• R2 – 240R 0,25W – 1 шт.
• R3, R4, R5 – керамические резисторы 5W 0R1 – 3 шт.
• R6 – 2K2 0,25W – 1 шт.

• С1, С2 – 4700. 6800mF/50V – 2 шт.
• С3 – 1000. 2200mF/50V – 1 шт.
• С4 – 150. 220mF/50V – 1 шт.
• С5, С6, С7 – 0,1mF = 100n – 3 шт.

• D1 – 1N5400 – 1 шт.
• D1 – 1N4004 – 1 шт.
• LED1 – светодиод – 1 шт.
• Диодная сборка – у меня не было в наличии сборок на чуть меньший ток, поэтому плата нарисована под использование KBPC5010 (50 Ампер) – 1 шт.

Транзисторы, микросхемы:

• IC1 – LM317MB – 1 шт.
• Q1, Q2, Q3 – TIP132C, TIP41C, КТ819ГМ, 2N3055, 2SC5200 – 3 шт.

• Разъемы 2 Pin с болтовым зажимом (вход, выход, амперметр) – 3 шт.
• Разъем 2 Pin 2,54mm (светодиод, регулирующий переменник) – 2 шт.
В принципе разъемы можно и не ставить.
• Внушительный радиатор для выходников – 1 шт.
• Трансформатор, вторичка на 22. 24 Вольта переменки, способная дежать ток порядка 10. 12 Ампер.

Размер файла архива с материалами по блоку питания на LM317 10A – 0,6 Mb.

Распиновка

Цоколевка КТ819 зависит от его назначения. В советские времена устройство выпускали в двух вариантах корпусов: пластиковом КТ-28 (аналог зарубежного ТО-220) и металлостеклянном КТ-9(ТО-3). В настоящее время такое разделение продолжается и встречается в некоторых технических описаниях. Рассмотрим поподробней расположение выводов у указанного транзистора в пластмассовой упаковке КТ-28, cлева на право у него: эмиттер (Э), коллектор (К), база (Б).

Подобные устройства, особенно в металлическом корпусе, встречаются на российском рынке с каждым годом все реже. Это происходит из-за практически полного сокращения их производства в нашей стране и наличия в большом количестве недорогих аналогов от зарубежных компаний. Вот так выглядит КТ819 в корпусе КТ-9.

Если смотреть на него снизу, то база расположена слева, эмиттер справа. Металлическая подложка-корпус — это коллектор. Рассмотрим другие данные этой серии полупроводниковых триодов.

Назначение выводов микросхемы:

Тонкости регулировки

Потребность в регуляторе напряжения будет в следующих условиях:

  • Необходима регулировка переменного, и постоянного напряжения.
  • Возможность регулировать напряжение в нагрузке.

Каждый перечисленный пункт определяет свой набор радиодеталей в схеме. Но устройство самого простого регулятора основано на переменном резисторе. При регулировке переменного напряжения не создается искажений. С помощью переменного сопротивления возможна регулировка и постоянного тока.

При разности потенциалов на входе и выходе возникнет потеря энергии. Переменное сопротивление начнет выделять тепло. Во избежание тепловых потерь на переменке используют индуктивность переменного типа.

Чтобы напряжение и нагрузка тока была заданного параметра, используют стабилизаторы. Напряжение на выходе сверяют с правильным значением, и при возникновении небольших заданных изменений происходит автоматическое восстановление регулятора.

Можно отыскать множество пошаговых инструкций, как сделать регулятор напряжения. Но самым простым, и понятным вариантом считается устройство на интегральных микросхемах. Удобство изделий позволяет питать светодиоды и другие системы освещения в автомобиле. Для сетевого регулятора нужен преобразователь понижающего типа, а к входу следует подключать выпрямитель.

Очень часто нагрузка может иметь разные параметры, поэтому для подобных случаев без специальных стабилизаторов напряжения не обойтись. Их работа может осуществляться в нескольких режимах.

Для всех устройств электронного типа важно получать стабильное напряжение. Они имеют нелинейные компоненты, встроенные в электрическую цепь.

Чтобы получить правильную настройку цепи, нужно чтобы разность потенциалов получила определенную величину. Любые ее изменения повлекут к нарушениям эксплуатационных значений.

Имеется регулятор напряжения основанный на тиристоре. Это очень мощный полупроводник, который применяется в преобразовательных приборах больших мощностей. Благодаря специфичному управлению, его используют для коммутации «переменки».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector