Vetaif.ru

Авто журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Паровой двигатель принцип действия

Современные паровые двигатели можно распределить на несколько групп:

  • с парогенераторным устройством прямоточного типа и обогревом факелом;
  • с образованием пара внутри цилиндров при факельном подогреве;
  • с аккумуляторными батареями теплового типа;
  • комбинированного вида.

Конструктивно установка включает в себя:

  • пусковое устройство;
  • силовой блок двухцилиндровый;
  • парогенератор в специальном контейнере, снабженный змеевиком.

Паровые установки для выработки электро- и тепловой энергии

Исторически под паровой машиной понимали работающий на водяном паре тепловой двигатель поршневого типа, а когда были изобретены паровые турбины, подобные двигатели часто стали называть турбомашинами.

Дешевые виды местного твердого топлива из биомассы (дрова, древесные пеллеты, брикеты, щепа, опилки) используются для генерации электроэнергии или когенерации, для чего разработаны несколько технологий. Основные:

  • газификация — получение низкокалорийного горючего (генераторного) газа с его последующим использованием в газопоршневом двигателе, приводящем в действие электрогенератор;
  • сжигание твердого топлива в паровом котле и использование полученного пара для работы паровой турбины;
  • сжигание твердого топлива в паровом котле и использование пара для работы поршневого парового двигателя (классической паровой машины или парового поршневого двигателя).


Паровой двигатель Spilling


Газовый детандер Spilling

Главным достоинством современных паровых поршневых двигателей (машин) по сравнению с маломощными (особенно одноступенчатыми) паровыми турбинами является меньший удельный расход пара при равных параметрах давления и температуры пара на входе и выходе и при одинаковой мощности паровой машины и паровой турбины. К плюсам классических паровых машин также надо отнести, по сути, постоянный удельный расход пара при изменении нагрузки в широких пределах (в отличие от двигателей внутреннего сгорания — ДВС) при постоянной частоте вращения (работе на синхронный электрогенератор).

А теперь сравним паропоршневые установки (ППУ) с газопоршневыми (ГПУ). Для работы ГПУ в качестве топлива используется не только природный газ, но и с недавнего времени биогаз и генераторный газ, полученный в результате газификации биомассы. При работе классического поршневого двигателя на генераторном газе мощность двигателя падает до 60%. Но если сравнивать с классической паровой машиной, для работы которой используется водяной пар, то, согласно термодинамическому циклу Карно, его экономичность выше за счет того, что температура продуктов сгорания в ГПУ выше температуры пара, ограниченной теплостойкостью материалов парового котла. Однако при работе ГПУ горючий газ высокой температуры необходимо охлаждать перед подачей в цилиндр газопоршневого двигателя, а это приводит к сбросу во внешнюю среду около 20% теплоты сгорания твердого топлива и делает ГПУ неконкурентоспособным классической паровой машине. Принципиальным отличием паропоршневых двигателей от газопоршневых является наличие у первых накопителя энергии — парогенератора (парового котла), который играет роль пароводяного аккумулятора. Большое значение имеет и стабильность рабочего тела (пара). Отсюда следует, что кратковременные остановки котла не приведут к немедленной остановке самой паровой машины. Чего не скажешь о газопоршневом двигателе, в котором при загрузке газогенератора топливом возможно изменение состава газа, а это может привести к остановке двигателя. Существенное преимущество паровых двигателей заключается также в том, что для работы специализированных паровых котлов можно использовать биомассу (щепу или дрова) естественной влажности, а для газогенераторных установок влажность сырья, как правило, не должна превышать 20%. К тому же ГПУ требует более тщательного ухода, в отличие от паропоршневого двигателя. Преимуществами ППУ перед ГПУ и ДВС являются высокая выносливость и долговечность, простота обслуживания и ремонта и возможность работы, по сути, на любом виде дешевого местного твердого топлива. Последнее условие важно, потому что обеспечивает возможность широкого использования топливных ресурсов на местах и независимость от привозного топлива (к примеру, от топлива так называемого северного завоза в России).

Выше мы сравнивали паровые машины с газопоршневыми двигателями, которые работают на газифицированной биомассе. Понятно, что при работе ГПУ на природном газе при генерации только электроэнергии их преимущество неоспоримо. Однако при когенерации расклад не в пользу ГПУ; утилизировать тепловую энергию выхлопных газов значительно сложнее, чем тепловую энергию выхлопа паровой машины, т. к. коэффициент теплоотдачи конденсирующегося пара в теплообменнике в десятки раз выше коэффициента выхлопного газа ГПУ. Паровая машина экологичнее за счет меньшего объема выбросов NO и CO. Работающие паровые двигатели замкнутого цикла менее шумные, чем ГПУ и ДВС. Паровая машина вполне может конкурировать и с паровой турбиной мощностью 1000-2500 л. с. Конечно, по размерам и весу паровые машины больше в сравнении и превосходят паровые турбины, но за счет меньшей частоты вращения вала ППУ нет необходимости устанавливать редуктор. Ведутся и разработки компактных поршневых паровых двигателей. Например, компания из США Cyclone Power Technologies Inc. разработала паропоршневой двигатель со звездообразным расположением цилиндров мощностью 75 кВт, КПД 31,5% — по аналогии с бензиновыми авиационными моторами, которые используются до сих пор на труженике советской и российской авиации — знаменитом биплане Ан-2.

Использование паровых машин

За рубежом в малой энергетике (мини-ТЭС) вместо малых паровых турбин успешно используются паровые машины, или, как сегодня принято говорить, паропоршневые (паровые) моторы или двигатели. Основной отличительный признак паропоршневых моторов от паровых машин — иной тип парораспределения. Паропоршневые моторы предназначены для работы с однократным расширением пара: пар из котла поступает параллельно во все цилиндры, подобно тому как поступает топливно-воздушная смесь в цилиндры ДВС. А в классических паровых машинах пар проходит через все цилиндры последовательно и расширяется многократно.

Мировую известность получили немецкие паровые моторы фирмы Spilling. Это одноступенчатые поршневые паровые машины противодавленческого типа с системой золотникового расширения пара, отличающиеся от других современных паровых машин, которые работают по многоступенчатому принципу. К сожалению, у модельного ряда паровых машин Spilling очень узкий диапазон мощности: от 100 кВт до 1,2 мВт. Но ресурс у них довольно большой, и в последние годы компания-производитель предлагает их на российском рынке для установки на мини-ТЭС, работающих на биотопливе, на производствах, где есть возможность и необходимость редуцирования пара с расходом от 2,5 т/ч и на установках для утилизации отходов (ТБО, ТКО и др.). Компания Spilling поставляет паропоршневой двигатель в сборе с электрогенератором как готовый к работе агрегат с системой управления, автоматизации и программным обеспечением. Такой двигатель может также работать на природном газе либо биогазе в качестве детандера. Стоимость 1 кВт установочной электрической мощности при расчетах можно принять от 1500 евро FCA. Основные технические данные паропоршневых двигателей Spilling: электрическая мощность 100-1200 кВт; частота вращения — 750, 900 и 1000 об/мин; давление пара на входе — 4-60 бар, на выхлопе — 0,2-15 бар; температура насыщения пара — до 480°С. Для многих двигателей Spilling в качестве топлива используют биомассу, в первую очередь древесную. Например, на одном из деревообрабатывающих предприятий в Африке установлен трехцилиндровый одноступенчатый паропоршневой двигатель Spilling электрической мощностью 437 кВт с давлением пара на входе 9 бар и на выхлопе 0,5 бар. Отходящий пар используется для обеспечения работы сушильной камеры. После ввода в эксплуатацию этого двигателя предприятие обеспечило себя дешевой электро- и тепловой энергией и, что особенно важно, обрело независимость от поставок электроэнергии из общей сети.

В числе других европейских производителей паропоршневых двигателей можно назвать чешскую компанию Tenza s. a., которая предлагает паровые двигатели мощностью от 10 до 120 кВт, и шведскую компанию Energiprojekt i Sverige AB, которая производит паровые двигатели мощностью от 500 до 1000 кВт с давлением пара на входе 30-60 бар и с заявленным КПД 25-30% (машины работают по термодинамическому циклу Ренкина с регенерацией и полезным использованием теплоты конденсации пара). Австрийская компания Foerdertechnik GmbH производит когенерационные паровые машины электрической мощностью 150 и 300 кВт и тепловой — 110 и 220 кВт соответственно, в топках паровых котлов которых можно сжигать биомассу, в частности щепу. Максимальная температура пара — 350°С, давление — 32 бар, паропроизводительность 200 кг/ч. Но стоимость этих машин, конечно, очень высокая — 280 тыс. и 480 тыс. евро. При такой стоимости эти «золотые» машины можно использовать только в некоторых европейских странах (Австрии, ФРГ и др.), где реализуются масштабные программы поддержки и субсидий ВИЭ и гарантируется оплата генерируемой электроэнергии по «зеленому» тарифу в течение продолжительного времени (до 20 лет). Поскольку в России о таких тепличных условиях можно только мечтать, то ориентироваться нужно в первую очередь на отечественных и азиатских (КНР, Тайвань, Вьетнам и др.) производителей и разработчиков оборудования. В мире производят сегодня и так называемые паровинтовые машины, которые в большей степени можно отнести к категории турбин, только ротор у этих машин не с лопатками, как у классических турбин, а в виде винта Архимеда — в основном цилиндрической или конусно-винтовой формы.

Первый отечественный паропоршневой мотор был спроектирован в Московском авиационном институте (МАИ) в 1936 году и предназначался для силовой установки экспериментального самолета. Двигатель работал на перегретом паре с давлением 6 МПа и температурой 380°С и на оборотах до 1800 об/мин.

В современной России нужно выделить научную группу «Промтеплоэнергетика» МАИ, которая предлагает довольно оригинальное решение вопроса экономически целесообразного применения паропоршневых машин в малой и децентрализованной энергетике России. Разработчики предлагают создавать паропоршневые двигатели на базе серийно выпускаемых дизельных поршневых двигателей. В конструкции ДВС сохраняется почти весь механизм газораспределения, который в ППУ становится механизмом парораспределения, также сохраняется кривошипно-шатунный механизм. Подобный подход обеспечивает низкую стоимость парового двигателя, в отличие от зарубежных аналогов, благодаря тому, что в производстве используются серийные автомобильные двигатели и запчасти к ним. Кстати, понятие «паропоршневые двигатели» впервые было введено в 2003 году именно научной группой «Промтеплоэнергетика» МАИ.

Где использовать паровые машины эффективно?

В качестве объектов, энергетическую эффективность которых можно повысить при использовании современных паровых машин, могут выступать:

  • промышленные и муниципальные котельные с паровыми котлами (паровая машина для привода электрогенератора);
  • паросиловые мини-теплоэлектроцентрали (мини-ТЭЦ), где паровую машину целесообразно устанавливать вместо маломощных паровых лопаточных и винтовых турбин, особенно если электрическая мощность последних до 1,2 МВт и они изготовлены в одноступенчатом варианте или же в многоступенчатом, но без промежуточного отбора пара;
  • технологические производственные установки на предприятиях, где по условиям реализации основных процессов выпуска продукции есть возможность с помощью парового котла-утилизатора использовать сбросное тепло (например, в металлургии подобными установками могут выступать крупные сталеплавильные печи, а в стекольной промышленности — печи для варки стекла, на цементных, консервных и маслоэкстракционных, ликероводочных заводах и во многих других отраслях промышленности). Использование для этого технологии ORC (органического цикла Ренкина) — более дорогое решение, учитывая и то, что модули ORC в России не производятся.

Технологические решения для мини-ТЭС — конденсационных мини-электростанций (мини-КЭС) и мини-ТЭЦ — с использованием современных паровых машин принципиально схожи с известными, реализуемыми на паротурбинных мини-ТЭС. Это комбинированное производство электрической и тепловой энергии (когенерация на мини-ТЭЦ, в т. ч. создаваемых на базе котельных с паровыми котлами) либо так называемая тригенерация (см. рис. 1), т. е. выработка одновременно трех видов энергии (электрической, тепловой и холодильной). В качестве холодопроизводящего оборудования при тригенерации на паросиловых мини-ТЭС используются абсорбционные холодильные машины, для работы которых вполне достаточно отработавшего в паровом двигателе водяного пара. Такой вариант значительно экономичнее, чем выработка холода с помощью электрических кондиционеров.

Читать еще:  Снятие и установка кардана

В качестве заключения

Паропоршневые мини-ТЭЦ, работающие на биомассе, энергоэффективнее паротурбинных, газопоршневых (при работе на генераторном газе, полученном путем газификации биомассы) и дизельных. В паропоршневых мини-ТЭЦ удельный расход пара на выработку электроэнергии в 1,3-1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при мощности 1200-1500 кВт. Современные паровые поршневые машины вполне могут использоваться в децентрализованной энергетике России. Применяя местные альтернативные виды топлива, в основном древесную биомассу, можно успешно заменить во многих регионах дизель-генераторы паровыми машинами (паропоршневыми установками) и дополнительно получать тепловую энергию, в результате отказаться от северных завозов угля и дизтоплива. Применение ППУ может способствовать энергосбережению при эксплуатации технологических и энергетических установок, в частности тех, у которых при работе выделяется сбросное тепло в виде выхлопных или дымовых газов.

Сергей ПЕРЕДЕРИЙ, Германия,
s.perederi@eko-pellethandel.de

В статье использованы некоторые материалы научной группы «Промтеплоэнергетика» МАИ и кафедры «Атомная и тепловая энергетика» Санкт-Петербургского политехнического университета им. Петра Великого

История изобретения [ править | править код ]

Паровая машина была изобретена в XVIII веке, когда основной недостаток гидросиловых установок (зависимость от местных условий), мало сказывавшийся при вращении жерновов зерновых мельниц, стал сильно препятствовать развитию металлургических предприятий, главным образом из-за невозможности применить водяные колёса для откачивания воды из рудников, удалённых от источников водной энергии. Возможность перевозки топлива сделала тепловой двигатель независимым от месторасположения источника энергии и позволила решать задачу рудничного водоотлива, в результате чего на рудниках появились теплосиловые установки.

Решая задачу водоподъёма, изобретатели (Д. Папен во Франции, Т. Ньюкомен и Т. Севери в Англии и др.) постепенно нашли конструктивные формы для осуществления непрерывного рабочего процесса паровой машины: отдельный паровой котёл, цилиндр, топочное устройство, краны и др. Однако это всё ещё были насосные установки, которые могли направлять работу цикла только на подъём воды и были не в состоянии удовлетворить потребности в двигателях для заводских машин (воздуходувных мехов, рудодробильных пестов, кузнечных молотов, лесопильных рам и др.). Так возник переходный период (1700—1780) в энергетике, когда водяное колесо стало ограничивать развитие техники вследствие зависимости от местонахождения источника водной энергии; паровой двигатель, хотя и был свободен от местных условий, был освоен только для подъёма воды.

Потребности заводов привели к созданию комбинированных установок, в которых паровой насос поднимал воду на водяное колесо, приводившее в движение заводские машины. Такие установки не решали задачи о заводском двигателе, так как теряли в своей гидравлической части свыше 2/3 работы, получаемой от парового цикла. Задача могла быть решена только путём замены гидравлической передачи работы механической, изысканием передаточного механизма, способного периодически отдаваемую паровым циклом работу передавать потребителю непрерывно, в любой необходимой форме движения. Простейший передаточный механизм в форме балансира просуществовал целое столетие, так как позволил при низком давлении пара поднимать воду на большую высоту за счёт разности площадей сечения парового и водяных цилиндров, но не решал главной задачи заводского двигателя — способности отдавать работу непрерывно.

Применение двух цилиндров с последовательной отдачей работы их полостей на общий вал было впервые предложено И. И. Ползуновым в 1763, однако из-за смерти изобретателя проект не был завершён, и машина была разобрана после нескольких пробных пусков.

В 80-х гг. XVIII века потребность в универсальном двигателе стала исключительно острой в связи с развитием первого этапа промышленного переворота — внедрением в производство прядильных и ткацких машин. Эти новые машины, дававшие возможность одновременного действия многих орудий, определили в последней четверти 18 в. период завершения первого этапа в развитии паровых машин. Задача приняла конкретную форму: необходимо было превратить паровую насосную установку в двигатель с вращательным движением вала. Решение этой задачи нашло своё отражение в патентах разных стран на паровые машины в 80-х гг. XVIII в. Наибольшее распространение получила паровая машина Джеймса Уатта, (Англия), как наиболее экономичная вследствие отделения конденсатора от цилиндра. С 1800 развитие паровой машины и её внедрение в промышленности и на транспорте идёт возрастающими темпами. К середине XIX века суммарная мощность паровозов превосходит мощность фабричных установок. Во 2-й половине XIX века мощность судовых установок также становится выше мощности стационарных, а к концу века становится наибольшей составляющей в общем балансе установленной мощности, достигшей 120 млн. л. с.

Промышленный переворот — переход от мануфактурного ручного производства к машинному — получил своё завершение с созданием универсального двигателя. В течение почти всего 19 в. паровая машина определяла уровень энергетики машинного производства и транспорта, темпы и направление их развития. Паровая машина увеличивала потребность в каменном угле и удовлетворяла эту потребность, поскольку она поднимала уголь из шахт, вентилировала их, откачивала из них воду. Паровая машина увеличивала потребность в металле и удовлетворяла её, поскольку она нагнетала воздух в доменные печи, проковывала детали машин, вращая валы прокатных станов. Паровая машина предъявила новые требования к технологии металлообработки и удовлетворяла их, приводя в движение металлообрабатывающие станки, способствуя становлению и развитию машиностроения — производства машин, делающих машины.

В своём развитии паровая машина способствовала появлению новых областей знания. Созданная на основе производственного опыта, паровая машина поставила перед учёными ряд вопросов, разрешение которых создало новую науку — техническую термодинамику.

К началу XX в. паровая машина достигла высокой степени совершенства. За сто лет развития мощность паровой машины повысилась от 5—10 л. с. до 20000 л. с., экономичность — от 0,3 % до 20 %, давление впускаемого пара — от 0,1 ата до 120 ата, температура пара — от 100° до 400°, число оборотов в минуту — от 20—30 до 1000 об/мин; удельный вес снизился от сотен до 1—2 кг/л. с.; занимаемая площадь уменьшилась от нескольких квадратных метров до их сотых долей на 1 л. с. Расход пара для паровой машины высокого давления с многократным расширением составляет 2,62 кг/л. с.-час. КПД достиг 20-25 %.

На основе опыта, приобретённого в производстве паровых машин, был создан новый поршневой двигатель — двигатель внутреннего сгорания, в котором сгорание происходит непосредственно в цилиндре двигателя, то есть по сравнению с собственно паровой машиной устранено одно промежуточное звено (пар, как промежуточное рабочее тело, и парокотёльный агрегат, как генератор пара). Благодаря малому удельному весу (то есть отношению веса к мощности) двигатель внутреннего сгорания получил широкое распространение на транспорте. Развитие паровых машин привело и к созданию другого парового двигателя — паровой турбины, в которой видоизменён характер использования пара, вырабатываемого котёльным агрегатом, и вместо пульсирующего движения поршня и кривошипно-шатунного механизма используется непрерывное течение пара через проточную часть двигателя, то есть по сравнению с собственно паровой машиной устранено звено поршень—кривошипно-шатунный механизм, что позволило сконцентрировать большие мощности в одном агрегате. Паровая турбина оказалась наиболее целесообразной формой привода для мощных электрогенераторов, требующих равномерного вращения.

Типы судовой паровой машины

В течение 19 века было разработано большое количество поршневых судовых паровых двигателей. Два основных метода классификации таких двигателей — механизм соединения и технология цилиндров .

Большинство ранних судовых двигателей имели ту же технологию цилиндров (простое расширение, см. Ниже), но использовалось несколько различных методов подачи энергии на коленчатый вал (то есть соединительный механизм). Таким образом, ранние судовые двигатели классифицируются в основном по механизму соединения. Некоторыми распространенными механизмами соединения были боковые рычаги, шпильки, балансирные балки и механизмы прямого действия (см. Следующие разделы).

Однако паровые двигатели также можно классифицировать по цилиндровым технологиям (простые расширительные, составные, кольцевые и т. Д.). Таким образом, можно найти примеры двигателей, классифицируемых обоими методами. Двигатель может быть составным типом шагающей балки, составной — технологией цилиндра, а шагающей балкой — способом соединения. Со временем, когда большинство двигателей стало прямого действия, но технологии цилиндров стали более сложными, люди начали классифицировать двигатели исключительно в соответствии с технологией цилиндров.

Наиболее часто встречающиеся типы морских паровых двигателей перечислены в следующих разделах. Обратите внимание, что не все эти условия относятся исключительно к морским приложениям.

Паровик

Полный отчет об изготовлении простенького парового двигателя. Делал в основном из любопытства: одно дело теоретически знать, как там все работает, совсем другое — решить инженерную задачу изготовления паровика из всякого хлама.

Немного теории

Базовые принципы изготовления паровика изложены в книге Абрамова «Самодельные электрические и паровые двигатели». Идея использовать сантехническую арматуру взята из статьи «Паровой двигатель без станков и инструментов». Кое-что почерпнул из обсуждения «Паровой двигатель своими руками из дверных замков».

Принцип действия парового двигателя. Пар из котла подается в трубку золотника 1. В этой трубке ходит поршенек 2. В том положении золотника, который изображен на левом рисунке, пар проходит по трубке 4 в цилиндр 5 и толкает поршень 6. Шатун 7 толкает кривошип 8 вала 9. Вал с маховиком 10 проворачивается и второй кривошип 11 толкает тягу 12. Тяга закрывает золотник, перекрывая подачу пара из котла и стравливая давление в цилиндре. За счет маховика вращение вала не останавливается и продолжается движение до следующего цикла.

Закупаемся

Все детальки были в наличии дома или докупались по мере необходимости в близлежащих магазинах.

Из сантехнического магазина: полудюймовый сгон на 75 мм, тройник, 2 штуцера на 7 мм и 4 штуцера на 9 мм, 4 полудюймовых муфты, стандартный крепеж для полипропиленовых труб — 4 шт.

Из магазина метизов: болты, гайки, гроверные шайбы и просто шайбы на 4 и 5 мм, россыпью, без счета. Отдельно длинная шпилька на 4 мм. Крепеж – 2 оцинкованных уголка на 75 x 75 мм, по 2 пластины на 80 и 100 мм. И еще 6 уголков на 15 x 15 мм. И еще нужен шланг на 8 мм, около 1 метра, чтоб с запасом.

Из спортивного магазина – хоккейная шайба.

Мастерим

Из штуцеров на 7 мм делаем головки цилиндров. Спиливаем лишнее, при желании еще можно рассверлить отверстие до 5 мм. Если оставить на 4 мм, то иногда закусывает шток поршня.

Шток поршня делается из 70 мм болта М4. Сам поршень состоит из двух гаек, между которыми плотно накручена ФУМ лента. На другом конце – крепление для шатуна, в моем случае – уголок 15 x 15 мм. Посередине – головка цилиндра. После сбора поршень надо притереть в цилиндре. В последствии поршень смазывал перед каждым запуском литолом.

Золотник нужен для управления потоком пара. Делаем его из тройника, на который с одной стороны через муфту прикручен поршень, с другой – 9 мм штуцер посаженый на ФУМ ленту. Сверху потом надо будет добавить еще один штуцер.

Поршень рабочего цилиндра делается из шпильки М4 длиной 75 мм. Технология изготовления аналогична поршню для золотника.

Рабочий цилиндр выполняет основную работу. Собирается из 75 мм сгона, 2 муфт, поршня и штуцера на 9 мм.

Читать еще:  После замены масла двигатель стал дымить

Золотник и рабочий цилиндр в сборе.

Шатуны нужны для преобразования поступательного движения во вращательное. Изготавливаются из 75 мм болтов М4, на концах – 15 мм уголки.

Кривошипно-шатунный механизм в сборе. Плечи кривошипа делаются из оцинкованных пластин, которые скрепляются между собой 40 мм М5 болтом. На кривошип сажается шатун, шатун крепиться к поршню. Изначально ход поршня планировался 70 мм, ход золотника 40 мм (это удвоенное расстояние между отверстиями в пластине или удвоенное плечо кривошипа). Потом, в процессе доработки стало 46 мм и 20 мм соответственно.

Половинка коленчатого вала. По сути сам вал – это два болта. Один болт, коротенький, 30 мм М5, второй длинный – 60 мм М5. На длинном потом будет висеть маховик. К болтам, под углом 90 градусов, крепятся кривошипы.

Сборка основания коленчатого вала. Вал висит на оцинкованных 75 мм уголках. Уголки крепятся к куску 14 мм фанеры.

Чтобы поршни были в одной плоскости с валом, монтируем на основании площадку из фанеры высотой 28 мм. На площадку ставим рабочий цилиндр и золотник. Выравниваем их положение, чтобы добиться оптимального хода поршней.

На золотник наворачиваем штуцер на 9 мм. Соединяем шлангом рабочий цилиндр и золотник. Все крепим, тестируем, переделываем. И еще раз, и еще…

Испытания двигателя

Не стоит надеяться, что эта фигня сразу заработает. Поэтому берем автомобильный компрессор, которым колеса накачивают, и подсоединяем его шлангом к золотнику, вместо котла. Компрессор легко обеспечивает рабочие давление в пару атмосфер, а мы вылавливаем ошибки конструкции.

В результате получаем работающий от компрессора двигатель:

Хоккейная шайба не потянула на маховик, пришлось вешать дополнительный противовес в виде накидного ключа на 14.

Работа от пара

Паровая машина с котлом. Котел собрал из уголка, бочки и муфты на 32. С торцов две закрытые заглушки. Сверху заглушка с внутренней резьбой на полдюйма.

До постройки модели был наивно уверен, что главная часть паровой машины – двигатель. По факту оказалось, что наиболее важен котел. Мои заблуждения были настолько глубоки, что поначалу попробовал запустить котел от 2 свечей. Ага, щас, за полчаса вода даже не начала закипать.

В результате котел грел на газе. С момента поджига рабочее давление достигается минуты через пять. Пара вырабатываемого котлом хватает примерно на 10 секунд работы двигателя, потом опять надо примерно 30 сек. набирать давление. Двигатель можно запускать в течении двух-трех минут, потом давление пара резко падает. До полного выкипания воды в котле проходит где-то 10 минут.

Все это безобразие мгновенно нагревается, пар получается непривычно горячим (если что — в кипящем чайнике пар относительно холодный), обжечься элементарно, ничего касаться нельзя. Из-за агрессивной среды оцинкованные болты окисляются чуть ли не на глазах.

Pavel Senotrusov

Здравствуйте а можно весь список необходимых деталей , что бы за 1 раз можно было все купить?

Сразу должен предупредить – проект не самый удачный: рабочий цилиндр великоват, для него нужно много пара. От автомобильного компрессора работает нормально, а вот с котлом придется помудрить. Для парового двигателя, сантехника: Сгон 1/2 дюйма L75 мм – 1 шт. Тройник обжимной с переходом на внутреннюю резьбу, 16 мм х 1/2 дюйма – 1 шт. Штуцер 1/2 дюйма на 7 мм – 2 шт. Штуцер 1/2 дюйма на 9 мм – 4 шт. Муфта 1/2 дюйма – 4 шт. Крепеж для полипропиленовых труб 20 мм – 4 шт. Шланг d8 мм – 1 метр. Хомуты 8-12мм – 4шт. Метизы Болты М4 70мм – 4шт. Болты М4 15мм – 2шт. Болты М5 40мм – 2шт. Болт М5 30мм – 1шт. Болт М5 60мм – 1шт. Болты берите с запасом. Гайки, гроверные шайбы и просто шайбы на 4 и 5 мм не считал, берите всего по 20, должно хватить. Шпилька М4 – стандартно продается по метру. Оцинкованный уголок 75мм х 75мм – 2 шт. Оцинкованная пластина 20мм x 100мм – 2 шт. Оцинкованный уголок 15мм x 15мм – 6 шт. Примерно так.

Современный Паровой Автомобильный Двигатель

Паравой двигатель на автомобиле

В последнее время многие изобретатели вновь задумались об использовании паровой машины в средствах передвижения. В автомобиле возможно применение нескольких вариантов паросиловых установок: с прямоточным парогенератором непосредственного факельного обогрева, с внутрицилиндровым парообразованием при непосредственном факельном обогреве, с тепловыми аккумуляторами вместо факельного обогрева и комбинированных.

Авторы предлагают свою схему автомобильной силовой установки с использованием горюче-паровой машины и теплового аккумулятора в качестве парогенератора.

Гидравлическая турбина,История развития паровых турбин,паровая машина,паровая турбина, генераторы, альтернативная энергия

Установка состоит из двигателя (двухблочной прямоточной паровой машины) так называемого пускового блока, включающего один цилиндр с отдельным золотником и отдельным выхлопным патрубком. Другой блок, условно названный силовым, имеет два цилиндра, в которых происходит двукратное расширение пара. Золотник здесь подает пар в цилиндр высокого давления, а подача пара в цилиндр низкого давления регулируется поршнем цилиндра высокого давления. Выхлопные патрубки пускового и силового блоков объединены в общий коллектор, направляющий пар в кран-распределитель.

Имеется также прямоточный парогенератор со змеевиком, который размещен в контейнере, заполненном твердым или фазопереходным теплоаккумулирующим веществом, и охватывается снаружи обогревательной камерой.

Принцип действия парового двигателя

Схема работает следующим образом. Поворотом ключа в замке зажигания подключается питание от электрического аккумулятора от первого, второго и третьего электродвигателей.

Первый двигатель приводит в действие воздуходувку, которая прокачивает наружный воздух через радиатор и подает его по воздуховоду в смеситель-горелку.

Одновременно второй электродвигатель приводит в действие топливный насос, который подает конденсат из бака через змеевик подогревателя в корпусе водоотделителя и подогреватель в составе экономайзера в змеевик парогенератора. Образовавшийся в парогенераторе перегретый пар направляется в паровую машину через дроссельный клапан.

На момент пуска доступ пара в цилиндры паровой машины закрыт либо дроссельным клапаном, либо золотниками, которые управляются кулисным механизмом. Переводя его рычаг в направлении нужного движения и открывая дроссельный клапан, водитель запускает в действие паровую машину. При этом пар попадает вначале либо в пусковой цилиндр через золотник пускового блока, либо в цилиндр высокого давления силового блока паровой машины через золотник силового блока&thinsp – в зависимости от того, какой из них остался в открытом положении в момент предыдущей остановки.

Отработанный пар через общий выхлопной коллектор подается на вход крана-распределителя, который делит его поток на две неравные части. Меньшая направляется в паровое сопло смесителя-горелки, смешивается в нем с воздухом, поданным воздуходувкой, и воспламеняется свечой зажигания. Возникший факел обогревает контейнер. Далее несколько остывшие продукты сгорания по газоходу попадают в корпус водоотделителя, где из них конденсируется вода и стекает в водяной бак. Остатки газа выбрасываются в атмосферу.

Большая часть отработанного пара направляется краном-распределителем в турбину, которая вращает ротор электрогенератора. После турбины пар идет в сопловой конденсатор, а из него&thinsp – в радиатор, где охлаждается, отдавая тепло воздуху, и стекает в водяной бак.

Как пользоваться паромобилем?

Паровая машина может быть напрямую соединена с приводной трансмиссией автомобиля, и в этом случае с началом ее работы начинается и движение автомобиля. Однако по практическим соображениям паровой автомобиль все таки следует оснащать механизмом сцепления. В частности, он необходим при буксировке и различных проверочных манипуляциях.

Во время движения водитель в зависимости от обстановки меняет скорость, регулируя мощность паровой машины. Это производится либо качественно&thinsp – дросселированием пара с помощью клапана, либо количественно&thinsp – изменением момента отсечки подачи пара с помощью кулисного механизма. Практически водителю удобнее пользоваться дроссельным клапаном как аналогом педали газа, но экономичнее&thinsp – кулисным механизмом.

При кратковременных остановках (перед светофором) водитель тормозит и прекращает работу машины с помощью кулисного механизма. При более длительных остановках он отключает также электросхему, что прекращает работу топливного насоса и воздуходувки.

Применение теплового аккумулятора и трехцилиндровой паровой машины со сдвигом фаз парораспределения на 120 обеспечивает немедленный запуск установки как после кратковременной, так и после длительной остановки.

Поддержание массы теплового аккумулятора в оптимальном температурном режиме производится специальным автоматом, который с помощью термопары отслеживает температуру этого аккумулятора. По достижении нижнего предела температуры он переводит кран-распределитель в режим увеличенной подачи пара в смеситель-горелку. По достижении верхнего температурного предела автомат оставляет горелку в дежурном режиме работы с малым расходом пара.

Преимущества паровой машины

Способность паровой машины к неограниченно длительной работе с перегрузкой и широкий диапазон регулирования мощности позволяют снизить ее установленную мощность в сравнении с ДВС, а также дать большое ускорение при движении с места (хорошую приемистость ). Кроме того, при любых остановках автомобиля паровая машина, в отличие от ДВС (особенно дизельного), не работает.

В составе рассматриваемой установки отсутствуют такие обязательные для ДВС механизмы и устройства, как коробка передач, стартер, воздушный фильтр, глушитель, каталитический дожигатель, карбюратор, система турбонаддува, а система зажигания предельно упрощена, и ее единственная свеча не подвергается забрасыванию . Не требуется антифриз, поскольку единственная используемая жидкость&thinsp – спирт&thinsp – не замерзает при земных климатических температурах. Нет никаких проблем с засорением жиклеров карбюратора, переобогащением топливной смеси, смесеобразованием, запуском в холодное время года. Проблема просачивания пара в картер машины решается выводом дренажной трубки в горелку.

Постоянно используемых органов управления паровым автомобилем всего три: рулевое колесо, дроссельный клапан (аналог педали газа) и рычаг кулисного механизма, которым водитель пользуется при торможении (подача контрпара) и перемене направления движения, причем последние два и даже все три могут быть совмещены в виде наклоняющейся вперед-назад рулевой колонки.

В заключение следует отметить, что изготовление и эксплуатация парового автомобиля будут существенно дешевле, чем машины с ДВС за счет меньшей цены топлива, более медленного износа двигателя, применения дешевых конструкционных материалов и конструктивной простоты. Все эти обстоятельства одновременно повышают надежность установки в целом.

Кроме того, водить паромобиль удобнее – за счет меньшего количества органов управления, бесшумности и отсутствия вибраций.

Владимир Черкасов, Константин Черкасов.

Главные вкладки

ПАРОВАЯ МАШИНА ИЗ СТАРОГО ДВИГАТЕЛЯ

С отслужившими автомобилями-пенсионерами церемониться нынче не принято. Можно завести в лес подальше от дома и бросить на “съедение” микроорганизмам. Если повезет, в утиль, на переплавку. Что касается кузова и прочих частей, может быть, лучшей участи они уже и недостойны. А вот с ДВС не горячитесь, он вам еще послужит.’Пора переходить на паровую тягу’, — полагают наши лорды-изобретатели из Рязани.

Проблема энергообеспечения знакома многим. Особенно в сельской местности, в деревнях, в отдаленных районах, где напряжение в сети, если оно вообще есть, редко поднимается чуть выше 150 В, а то и вовсе пропадает, измученное наледями и ветрами, изношенными сетями, трансформаторами, гнилыми опорами и пр. При таком скудном питании не работает или быстро ломается бытовая техника, становятся неэффективными обогреватели, а с компьютером и вовсе беда.

Выход, конечно, есть — мобильные генераторы, работающие на бензине или солярке. Только дорого это обходится: и сам агрегат, и особенно топливо.

Читать еще:  Как сделать глушитель своими руками для авто

Когда-то, на старте, ДВС стремительно обогнал паровую машину по нескольким важным параметрам. Экономичность, компактность, быстрый запуск заставили автомобилистов мириться с дороговизной горючего. Чтобы уменьшить шумность пришлось разработать изощренные системы глушения. Крайне невыгодные тяговые характеристики ДВС обернулись применением дорогих и тяжелых коробок передач и трансмиссий. И тем не менее…

Последний (к сожалению) паромобиль американской фирмы “Добл”, выпущенный в 30-х гг. прошлого века, обладал удивительными характеристиками. Плавно поворачивая дроссельный клапан, водитель мог так мягко регулировать скорость, что пассажиры не замечали ускорения и торможения. Но можно было ускорить автомобиль настолько резко, что рвались шины. Тот же диапазон регулирования скорости полностью сохранялся и на заднем ходу. Причем лишь прикосновения к педалям было достаточно для переключения с полного переднего на полный задний.

Такие поразительные свойства паромобиля получаются автоматически, как следствие чрезвычайно выгодных тяговых характеристик паровой машины, способной на малых оборотах создавать большой крутящий момент на колесах.

И хотя паровик пока по-прежнему остается на задворках технического прогресса, именно эти качества возбуждают растущий интерес и просто поклонников, и изобретателей. Свидетельство тому — появление новых патентов в области паровой техники. Сообщается, например, о разработке американского изобретателя Вильямса. На его паромобиле нет ни сцепления, ни коробки передач, ни стартера. Простого поворота клапана достаточно, чтобы за 10 с. ускорить экипаж до 100 км/ч. Мощность парового двигателя 230 л.с. при 4800 об/мин. Максимальная скорость 280 км/ч. Всего 50 л воды хватает на 1500 км пробега.

Российскому изобретателю Н.Егину удалось свести в одном агрегате обе концепции: паровик и ДВС. Оказалось, что любой ДВС надежно работает от подходящего парогенератора. Для этого достаточно сделать нехитрое золотниковое устройство подачи пара в цилиндры — и пожалуйста, снимай мощность с коленчатого вала. Можно напрямую или более универсальным способом — с помощью электрогенератора.

В новой роли прекрасно чувствует себя даже очень потрепанный ДВС. Дело в том, что скорость вращения двигателя теперь составляет всего 1000 об/мин. Сравните с 5—6 тыс. у двигателей современных автомобилей. Но не только умеренные обороты причина феноменальной надежности паровой установки. Температура в цилиндрах машины в 5—6 раз ниже, чем в ДВС. Пар, в отличие от горючей смеси, не взрывается, не разрушает поршень, а, расширяясь, мягко давит на него. Отсюда и плавность хода, и невысокие требования к материалам и допускам.

В новой концепции Н.Егин в качестве парогенератора использует другое свое важное изобретение — тепловые термохимические установки (ТХУ) (ИР, 12, 07). Основа ТХУ — добротный чугунный паровой котел, которому нет износа. Такие котлы по-прежнему делают в России. Отслуживших свое ДВС тоже хватает: мотоциклы, “москвичи”, “Волги”, “жигули”, локомотивы и судовые дизели. Модельный ряд старых ДВС перекрывает все разумные потребности: от 1 кВт для садового домика до 2 мВт, дающих тепло и электроэнергию целому поселку. Такие большие мощности можно получить, если к котлу ТХУ с рабочим давлением 7—9 атм подключить турбину российского производства, например радиального типа. В ней высочайшая надежность (60 тыс. ч до ремонта) сочетается с ценой на порядок более низкой, чем у зарубежных аналогов.

Идея вернуть в строй колоссальный ресурс старых ДВС выглядит поистине революционной. До этого не додумались даже на родине парового двигателя, где членами клубов многочисленных любителей и поклонников паровика являются даже лорды.

В паровую машину можно превратить не только автомобильный двигатель, но и мощный дизель, отработавший свой век на производстве, сэкономив тем самым тонны солярки. А в глухой глубинке, куда топливо можно доставить только на вертолете, это настоящее спасение.

Самыми существенными недостатками паровой тяги считаются большой вес и малая экономичность. Естественно, она становится выгоднее на мощностях порядка 800 л.с. когда теплоту отработанного пара можно использовать для отопления или технологических нужд. Именно такие требования предъявляют к тягачам и вездеходам на Крайнем Севере. А тандем ДВС и ТХУ (напомним, это тепловые термохимические установки “ЭРА”) максимально расширяет модельный ряд и уже реально вписывается в габариты современного автомобиля.

Что же касается экономичности, паровая машина с ее низкими температурами пара не может сравниться с ДВС по расходу топлива на километр пути. Зато котел можно топить хоть торфом, хоть соломой, а “ЭРА” и вовсе будет рада и пластику, и старым калошам.

По подсчетам изобретателя, расходы на перевод ДВС в режим паровой машины окупятся за полгода. Вам обеспечены лет на 20—25 источник тока мощностью 1—25 кВт и чистота вокруг. Свалки могут превратиться в стратегический энергоресурс.

Уже есть фирма, конструирующая на заказ такие “паровозы”, но это капля в море. Н.Егин полагает, что от деклараций и бесконечных экспериментов с нетрадиционными источниками энергии в России надо переходить к экспертной технической и экономической их оценке в целых отраслях, например ЖКХ, и приступать к планомерному внедрению.

Источники: http://www.ecotoc.ru/generators/pairs/d746/, http://fermer.ru/forum/samodelkin-ratsionalizator/40600

Комментариев пока нет!

Вас может заинтересовать

Одним из ключевых понятий в исследованиях устройства человеческой памяти является понятие ассоциации, а также связанная с ним ассоциативная память. далее.

Понятие глобальной компьютерной сети Интернет известно практически каждому современному человеку. Однако часто пользователи не ориентируются в понятиях, отражающих информацию технического или далее.

Проблемы при настройке локальной сети по Wi-Fi между Windows 7 и XP. Windows 7 не видит далее.

Компаундный паровой двигатель

Упрощённая схема паровой компаунд-машины тройного расширения:
Пар высокого давления (красный цвет) от котла проходит через двигатель, выходя в конденсатор при низком давлении (голубой цвет).

Большим минусом компаунд-машины, который выявило применение на паровозах, является невозможность трогания, если поршень в цилиндре высокого давления остановился в мертвой точке. Чтобы преодолеть этот недостаток паровозы с компаундной паровой машиной получили сложные приборы трогания, подающие кратковременно свежий пар сразу в два цилиндра.

На паровозах использовалось несколько вариантов компаундов:

  • цилиндры высокого и низкого давления располагаются параллельно один под другим снаружи рамы и работают на общий ползун. Данную схему имели паровозы американской постройки серий «B» и «X»;
  • цилиндры располагаются последовательно на общем длинном штоке (тандем-машина). По такой схеме строились российские паровозы серий «Р» и «П»;
  • Система де Глена — дополнительные цилиндры располагаются внутри рамы и работают на коленчатую ось. По данной схеме выпускались паровозы серии «У», а также опытный чехословацкий паровоз «18-01». В поздних сериях паровозов компаунд-машины не применялись из-за присущих им недостатков, добиваясь экономичности за счет перегрева пара.

Существенный вклад в изучение и применение паровой компаунд-машины на паровозах внёс российский инженер Александр Парфеньевич Бородин.

Как работает паровой двигатель

Есть угольный костер, который нагревает воду до тех пор, пока она не закипит и не превратится в пар.

Пар проходит по трубе в цилиндр через открытый входной клапан, где он толкает поршень и приводит в движение колесо.

Затем входной клапан закрывается, и открывается выходной клапан.

Импульс колеса заставляет поршень вернуться в цилиндр, где он выталкивает охлажденный нежелательный пар через выход и дальше вверх по дымовой трубе (дымоходу).

Детали парового двигателя

Паровые двигатели, такие как у этого Локомотива, являются примерами двигателей внешнего сгорания.

Огонь, который и создаёт теплоту, пламя и является источником энергии (1), находится снаружи (вне) цилиндра, где тепловая энергия превращается в механическую энергию (3). Между ними есть котел (2), который превращает тепловую энергию в пар. Пар действует как теплоноситель, толкая поршень (4), который перемещает колеса с помощью кривошипа (5) и приводит в движение поезд (6). Пар и тепловая энергия постоянно выбрасываются из дымовой трубы (7), что делает этот способ особенно неэффективным и неудобным для питания движущейся машины.

Есть много проблем с паровыми двигателями, но вот четыре из них – наиболее очевидных.

Во-первых, котел, который производит пар, работает под высоким давлением, и существует риск, что он может взорваться (взрывы котлов были серьезной проблемой с очень ранними паровыми двигателями).

Взрыв парового котла паровоза

Во-вторых, котел обычно находится на некотором расстоянии от цилиндра, поэтому энергия теряется по пути. Температура внутри кабины машиниста была как в бане – доходила до 100 градусов. Всё это тепло расходовалось, по сути, впустую.

В-третьих, пар, выходящий из дымовой трубы, все еще достаточно горяч, поэтому он содержит потраченную энергию, которая никак не конвертировалась в механическую.

В-четвертых, поскольку пар выбрасывается из цилиндра каждый раз, когда поршень толкается вперед, двигатель должен потреблять огромное количество воды, а также топлива.

Растопка паровоза и работа экипажа в движении

А растопку паровоза и подготовку его к поездке требуется не менее семи часов, поэтому смена локомотивной бригады начинается задолго до отправления состава.
Предварительно осматриваются все узлы и агрегаты на предмет обнаружения повреждений.

Все данные заносятся в журнал ремонта. При наличии дефектов производится ремонт бригадой слесарей. Движущиеся части полежат смазке. После процедуры заполняются все масленки, чтобы повторять эту процедуру в поездке. Затем экипаж приступает к растопке.

  1. Котел наполняется водой. В топку засыпается уголь, сверху на него укладываются дрова.
  2. Локомотив выкатывается из депо с помощью мотовоза. В начале растопки образуется большое количество дыма, а в помещении нет дымоотвода.
  3. Для розжига используется ветошь, смоченная в керосине. Пока не появится естественная тяга, в будке паровоза находиться невозможно из-за большого количества дыма.
  4. Когда дым рассеялся и дрова разгорелись, кочегар заходит в будку и проверяет равномерность горения.
  5. При давлении в 5 атмосфер машинистом проверяется инжектор и открывается сифон.
  6. При давлении 9 атмосфер он запускает паровоздушный насос.

После этого паровоз может сделать первый самостоятельный оборот колес. После начала движения проводится маневрирование и к локомотиву цепляется состав. Трогаться можно при зеленом сигнале светофора и после сигнала главного кондуктора.

Для отправления машинист

  • переводит реверс до упора в направлении движения;
  • открывает цилиндровые продувательные краны;
  • дает 2–3 толчка ручкой крана машиниста в положение отпуска;
  • дает сигнал отправления;
  • плавно открывает регулятор, чтобы можно было взять паровоз с места;
  • после начала движения локомотива уменьшает пуск пара, пока не двинутся вагоны, затем увеличивает впуск пара и устанавливает реверс в рабочее положение, увеличивает открытие регулятора;
  • в поездке он контролирует эти приборы для поддержания необходимой скорости.

В процессе следования бригада следит за сигналами светофора, показаниями приборов, подачей воды и топлива.

Расчет мощности ПМ ( в дюймовой системе).

Имеется общая английская формула для расчета мощности в индикаторных лошадиных силах.( в милиметры пока не перевел — диаметры английских и американских машин в дюймах довольно часто встречаются )
Мутным моментом при расчерте яваляется среднее давление пара в цилиндре . Но если альтернативщик берет за основу какую-то уже рабочую машину- можно посчитать ее даление и уже на основе этой цифры играться с размерами цилиндров, чтоб поднять мощность.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector