Какая нагрузка на двигатель на холостом ходу
Холостой ход электродвигателя
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.
Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.
Параметры холостого хода электродвигателя
Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.
В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.
Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.
Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.
Что делать, если греется электродвигатель на холостом ходу
Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.
Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.
Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.
Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.
Способы снятия нагрузки
Мотор должен прогреться на маленькой нагрузке, дроссель открывают на всю. Частота оборотов движка регулируется с помощью тормозной системы. Как только тепловой и скоростной режимы устанавливаются в определённое положение, замеряют показатели:
- весов;
- затраты топлива по времени;
- частоты оборотов;
- температуры воды;
- температуры масла.
Значения записываются, после чего выставляют другой режим, но с заниженными показателями. Измеряют и заново сравнивают. На основе всех испытаний строится график, где видны коэффициенты изменений различных показателей — затраты горючей смеси, излишки воздуха, наполнения, температуры. С помощью подобных опытов находят оптимальный режим работы двигателя.
Думаю, что уже и тут есть люди, которые пользуются программами и шнурками, работающими по к-line с одного сайта (не буду упоминать дабы не рекламить), для диагностики своих железных коней в условиях гаража.
Так вот интересно было бы собрать информацию по нормативам показателей, а то некоторые показатели выдаются, а какая у них норма не понятно.
Думаю, что была бы тема важна.
Ну или дайте лог файл с двигателя 7А :))
ну например
001 0101 Индикатор Check Engine Выкл
002 0101 Количество ошибок ECU 0,000 шт
004 0104 Расчетная нагрузка на двигатель 28,24 %
005 0105 Температура охлаждающей жидкости 80,00 °С
006 0106 Кратковременная топливная коррекция. Банк 1 1,530 %
007 0107 Долговременная топливная коррекция. Банк 1 -6,280 %
011 010B Абсолютное давление во впускном коллекторе 28,00 кПа
012 010B Расход воздуха на впуске (расчет по MAP) 3,036 гр/сек
013 010B Расход топлива мгновенный (расчет по MAP) 922,5 мл/час
014 010B Расход топлива мгновенный (расчет по MAP) 0,000 л/100км
015 010C Обороты двигателя 707,0 об/мин
016 010D Скорость автомобиля 0,000 км/час
017 010E Угол опережения зажигания 15,00 °
018 010F Температура воздуха на впуске 10,00 °C
022 0111 Положение дросельной заслонки 12,94 %
023 0114 U датчика кислорода №1. Банк 1 0,625 В
024 0114 Кратковременная топливная коррекция по датчику №1. -0,032 %
067 0136 O2S3_WR_lambda: Equivalence Ratio 0,000 %
068 0136 O2S3_WR_lambda: Current -128,0 мА
084 0143 Absolute load value 5039 %
Последний раз редактировалось Джек-потрошитель; 28.12.2010 в 05:35 .
Да и с двигателя 3S-FE тоже не помешает :))
Мертвый датчик кислорода 4А-ФЕ авенсис 99
Дата: 26.12.2010 Время: 17:28:36
Автомобиль: Протокол Toyota (ISO-14230)
Тип ECU: Powertrain (двигатель, коробка)
Кадр параметров реального времени
001 0101 Индикатор Check Engine Выкл Бит
002 0101 Количество ошибок ECU 0,000 шт
003 0103 Топливная система, статус Разомкнута, нагрузка —
004 0104 Расчетная нагрузка на двигатель 30,20 %
005 0105 Температура охлаждающей жидкости 91,00 °С
006 0106 Кратковременная топливная коррекция. Банк 1 -0,032 %
007 0107 Долговременная топливная коррекция. Банк 1 3,873 %
011 010B Абсолютное давление во впускном коллекторе 30,00 кПа
012 010B Расход воздуха на впуске (расчет по MAP) 3,724 гр/сек
013 010B Расход топлива мгновенный (расчет по MAP) 1252 мл/час
014 010B Расход топлива мгновенный (расчет по MAP) 0,000 л/100км
015 010C Обороты двигателя 852,3 об/мин
016 010D Скорость автомобиля 0,000 км/час
017 010E Угол опережения зажигания 3,500 °
018 010F Температура воздуха на впуске 25,00 °C
022 0111 Положение дросельной заслонки 9,412 %
024 0114 U датчика кислорода №1. Банк 1 0,480 В
025 0114 Кратковременная топливная коррекция по датчику №1. Банк 1 -0,032 %
212 01E1 Количество ошибок ECU по моде 13 0,000 шт
213 01E1 Количество ошибок ECU по моде 07 0,000 шт
217 01E4 Длительность импульса открытия форсунки 2,940 мс
218 01E4 Расход топлива мгновенный (расчет по Tфорсунки) 1052 мл/час
219 01E4 Расход топлива мгновенный (расчет по Tфорсунки) 0,000 л/100км
221 01E6 Idle Air Control Duty Ratio 30,11 %
228 01E8 Дросельная заслонка полностю закрыта Вкл Бит
— Добавлено чуть позже —
Логи снимай, и в тему по логам кидай, там покумекают.
А расход может быть даже от того что суппорта подклинивают, либо направляющие суппорта и колодки в зажатом положении.
Так что тут тебе придется искать
Golf Регистрация 05.10.2018 Адрес Казахстан, Костанай. Сообщений 762 Записей в дневнике 2
Спасибо: |
Получено: 56 Отправлено: 647 |
От чего зависят обороты холостого хода?
Обороты холостого хода можно отрегулировать самостоятельно или с привлечением специалиста. Для этой цели в автомобиле имеется несколько специальных агрегатов и узлов. К ним относится:
- топливная система;
- разного рода датчики;
- дроссельная заслонка;
- клапан холостого хода;
- педаль акселератора.
В состав топливной системы входит инжектор или карбюратор. Это агрегаты, в которых топливная жидкость смешивается с воздухом, образуя горючую смесь. В систему включен, и топливный насос с регулятором давления смеси. Работа системы питания двигателя топливом контролируется многочисленными датчиками.
На количество оборотов большое влияние оказывает и положение дроссельной заслонки. Она регулирует подачу в двигатель воздуха. Увеличить или уменьшить обороты можно нажатием на педаль акселератора.
Двигатель автомобиля может работать не очень стабильно на холостых оборотах по нескольким причинам:
- загрязнение некоторых узлов;
- неполадки в системе зажигания.
Загрязнение может осуществляться отработанным маслом, примесями, которые проходят сквозь фильтры, сажей и водой. В системе зажигания могут быть окислившиеся или плохо затянутые провода.
Расчёт фактора нагрузки на двигатель
Post by Sergey89 » Wed Oct 16, 2013 3:33 pm
В этой теме предлагаю обсуждать подходы и реализации расчёта фактора нагрузки на двигатель.
На данный момент, насколько мне известно, есть три основных методики расчёта фактора нагрузки на двигатель:
Mass Air Flow (ДМРВ)
Speed Density (ДАД)
Alpha N (ДПДЗ)
У всех на выходе получаем величину нагрузки на двигатель коррелирующую с величиной циклового наполнения.
Re: Расчёт фактора нагрузки на двигатель
Post by AndreyB » Wed Oct 16, 2013 5:10 pm
ДАД — это MAP, Manifold Air Pressure. Я голосую за него.
С другой стороны, есть ли у нас шанс вообще что-либо по-честному рассчитать? В Speed Density вываливается магическая таблица эффективности наполнения Как только у нас расчёт начинает базироваться хоть на одной магической таблице — то всё, можно расчёт упростить и просто заменить его на таблицу fuel = f(rpm, MAP)
Т.е. есть ли у нас способ объективно получить данные об эффективности наполнения, чтоб ставить её в фундамент какой-то математики?
Re: Расчёт фактора нагрузки на двигатель
Post by Sergey89 » Wed Oct 16, 2013 5:18 pm
Таблицу VE можно построить при помощи широкополосной лямбды. Однако во время настройки на наполнение будут влиять ряд других факторов, которые будут вносить ошибку в таблицу VE.
Вообще хотелось бы в расчётах по возможности использовать физическую модель. Эмпирическая модель как правило не даёт нужной стабильности параметров во всех возможных режимах, особенно если речь идёт о каждодневной эксплуатации.
Re: Расчёт фактора нагрузки на двигатель
Post by nikll » Fri Oct 18, 2013 12:30 pm
Вариантов расчета наполнения на самом деле только два:
1. физическая модель, к примеру по температуре заряда которую я описывал на старом форуме sequ-3
2. табличная модель с кучей взаимосвязанных таблиц либо одной многомерной таблицей (ДАД/ДМРВ/ДПДЗ — обороты — темпиратура_воздуха — темпиратура_двигателя)
По второй модели работают например январь и микас с заводскими прошивками. По первой модели работают прошивки trs j5ls и mikas-sport. Во всем этом в свое время провел много ночей в дизассемблере ).
Если отталиватся от датчиков определяющих наполенние то:
1. дроссель — самый тупой и самый простой вариант, годится только для атмосферников с постоянной автоподстройкой по ДК либо настраивать перед каждым выездом, применяется как правило на многодроссельных движках
2. ДМРВ он же MAF — дает тупо массовый расход воздуха, но довольно медлителен и пиздит на широких валах из за обратных выбросов (на средних оборотах под нагрузкой в 1,5-2 раза завышает)
3. ДАД он же MAP — дает абсолютное давление в рессивере, через таблицу эффективности наполнения двигателя и с учетом темпиратуры заряда мы можем расчитать точную массу кислорода в двигателе, проблемы возникают на движках с нестабильной картой VE, например с гидротолкателями (не путать с компенсаторами) где высота подьема клапанов сильно зависит от темпиратуры масла и оборотов. Так же с ДАДом довольно геморойно настраивать движки с продвинутым управлением распредвалами (VTEC VVTI и прочие). На том же вемсе на движках с VVTI долго и упорно откатывают карты по всем режимам со всеми углами сдвига фаз, без стенда почти не реально отстроить.
Так же системы с ДМРВ меньше реагируют на изменение наполнения движка т.к. отталкиваются именно от расхода а не от давления, но зато системы на ДАДе гораздо проще настраиваются, легче переносятся на другие модели двигателей и существенно быстрее и точнее реагируют на изменение нагрузки. Так же турбированные движки хоть и могут работать по ДМРВ но существенный наддув с ДМРВ просто опасен т.к. нет обагащения по скачку давления и есть существенный лаг в изменении расхода воздуха, к примеру летим по трассе на всех парах, турбина раскручина, буст еденица, сбрасываем газ на секунду, лишний воздух вылетает из клапана сброса, турбина еще крутится, ДМРВ показывает что расход воздуха упал, а теперь резко даем полный газ, т.к. турбина еще не успела остановится сразу скачком получаем давление в 0,6-0,8 избытка и краткую но бешенную детонацию ибо тормозной ДМРВ сообразит об изменении расхода воздуха только через пару десятков оборотв коленвала, что является приговором для поршневой.
Так что на мой взгляд ДМРВ (особенно с учетом стоимости и ограничений) на свалку т.к. это вообще не вариант.
По минимуму надо отталкиватся от дросселей и ШДК с постоянной автоподстройкой многомерной таблицы, по хорошему надо делать систему на ДАДе с алгоритмом расчета наполенния по темпиратуре заряда.
От чего зависят обороты холостого хода?
Обороты холостого хода можно отрегулировать самостоятельно или с привлечением специалиста. Для этой цели в автомобиле имеется несколько специальных агрегатов и узлов. К ним относится:
- топливная система;
- разного рода датчики;
- дроссельная заслонка;
- клапан холостого хода;
- педаль акселератора.
В состав топливной системы входит инжектор или карбюратор. Это агрегаты, в которых топливная жидкость смешивается с воздухом, образуя горючую смесь. В систему включен, и топливный насос с регулятором давления смеси. Работа системы питания двигателя топливом контролируется многочисленными датчиками.
На количество оборотов большое влияние оказывает и положение дроссельной заслонки. Она регулирует подачу в двигатель воздуха. Увеличить или уменьшить обороты можно нажатием на педаль акселератора.
Двигатель автомобиля может работать не очень стабильно на холостых оборотах по нескольким причинам:
- загрязнение некоторых узлов;
- неполадки в системе зажигания.
Загрязнение может осуществляться отработанным маслом, примесями, которые проходят сквозь фильтры, сажей и водой. В системе зажигания могут быть окислившиеся или плохо затянутые провода.
Способы снятия нагрузки
Мотор должен прогреться на маленькой нагрузке, дроссель открывают на всю. Частота оборотов движка регулируется с помощью тормозной системы. Как только тепловой и скоростной режимы устанавливаются в определённое положение, замеряют показатели:
- весов;
- затраты топлива по времени;
- частоты оборотов;
- температуры воды;
- температуры масла.
Значения записываются, после чего выставляют другой режим, но с заниженными показателями. Измеряют и заново сравнивают. На основе всех испытаний строится график, где видны коэффициенты изменений различных показателей — затраты горючей смеси, излишки воздуха, наполнения, температуры. С помощью подобных опытов находят оптимальный режим работы двигателя.
Опасна ли длительная эксплуатация на холостом ходу
Конечно, такой холостой ход, даже в течение длительного времени не нанесет какого-либо серьезного вреда техническому состоянию двигателя. И всё же полностью исключить возможные проблемы для мотора будет невозможно. На холостом ходу в системе не обеспечивается нужное давление масла, в каналах внутри мотора появляются твердые отложения, в цилиндрах и камере сгорания возникает нагар, который в последующем устранить даже с использованием качественного масла с моющими свойствами будет невозможно.
Специалисты рекомендуют даже во время нахождения в пробке в целях профилактики на нейтральной передаче раскручивать мотор до 3000 оборотов в минуту, что позволяет прочистить камеру сгорания и выхлопную систему от скопившихся отложений. Также таким способом можно поднять давление в системе смазки, это прочищает тонкие каналы, устраняя появляющиеся маслянистые отложения.
Единого мнения у механиков о том, вреден ли такой длительный простой с включенным двигателем на холостых оборотах, нет. Кто-то утверждает, что какого-либо серьезного вреда для двигателя подобное не нанесет, тогда как другие механики отмечают, что на таких моторах требуется капремонт уже на пробеге в 100 000 километров. Нужно помнить, что в руководстве по эксплуатации автомобиля четко указывается, что на автомобиле длительный простой не рекомендован, так как подобное может привести к преждевременному износу и необходимости дорогостоящего восстановления силового агрегата.
При этом какого-либо решения этой проблемы всё же не существует. Если приходится постоянно простаивать в пробках, то можно глушить мотор, как только движение останавливается, после чего заводить двигатель и подкатываться вперёд на несколько десятков метров. Однако в подобном случае неизменно страдает стартер, повышается нагрузка на аккумулятор и навесное оборудование. Единственная рекомендация, которую можно отдать водителю, это правильно выбирать дороги и время поездок, чтобы не попадать в такие заторы. Это сэкономит вам время и деньги на последующем обслуживании и ремонте автомобиля.
Подведём итоги
Автовладельцам часто приходится держать мотор на холостых оборотах, что чаще всего отмечается в пробках, в которых мы ежедневно простаиваем по несколько часов. Проблема в том, что во время такого холостого хода двигатель изнашивается, отмечается загрязнение масла, появляется закоксовка и возникает нагар в камере сгорания. В последующем, чтобы устранить подобные проблемы, требуется вскрывать мотор, выполняя его комплексную очистку и восстановление. Чтобы избежать подобных проблем, следует всё же стараться не держать длительное время мотор на холостых оборотах, правильно выбирая маршрут следования и не попадать в глухие пробки, в которых придется простоять несколько часов.
Частичное или полное воспроизведение материалов сайта zt116.ru возможно только при наличии гиперссылки.
Следите за самым важным и интересным в Telegram-канале Татмедиа